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Abstract. The electronic structure of liquid mercury is calculated using the scalar-relativistic
tight-binding linear muffin-tin orbitals (TB-LMTO) basis and the recursion method. Calculations
are performed for 1372 atom structural models of liquid mercury in the temperature range 150–
250◦C, generated via the Metropolis Monte Carlo method and suitable two-body potentials. The
existence of a pseudo-gap in the density of states (DOS), as conjectured by Mott, is carefully
examined. The calculation produces a lowering of the DOS at the Fermi level with respect to the
free electron value. The Mottg-factor is about 70%. The reason for the lowering of the DOS at
the Fermi level below the free electron value is the hybridization of the narrow d band with the
much broader sp band. This opens the so-called Fano gap in the sp density of states, pushing states
from the middle of the sp band to the edges. However, the overall (sp+d) density of states has
no deep or pronounced local minimum at the Fermi energy. For comparison, as well as a better
understanding of the liquid state electronic structure, the DOS of Hg in various assumed crystalline
phases is studied via the scalar-relativistic LMTO-ASA (atomic sphere approximation) method.
We also present resistivity results for the temperature range 150–250◦C, calculated by using the
Kubo–Greenwood formula and the TB-LMTO-recursion scheme.

1. Introduction

Electronic properties of liquid mercury are remarkably different from most other liquid metals.
In particular the dc resistivity is quite large and decreases on addition of most metallic
impurities. In order to explain these and other experimental results for liquid mercury Mott
[1] advanced the idea of a ‘pseudogap’, that is, a density of states at the Fermi energy
significantly reduced with respect to the free electron value. The existence of the pseudogap
was subsequently refuted by Evans [2], who carefully constructed a suitable pseudopotential
for mercury, giving particular attention to the d states near the bottom of the conduction band.
With the help of this pseudopotential Evans was able to explain most of the resistivity and
thermo-electric power data for mercury and its alloys using the Faber–Ziman theory, and
without invoking Mott’s pseudogap hypothesis. Chan and Ballentine [3] modified Evans’
pseudopotential by incorporating an appropriate effective-mass correction to screening. This
nonlocal pseudopotential was very similar to one of the pseudopotentials obtained by Jones
and Datars [4] by fitting to their Fermi surface measurements for solid mercury. Chan and
Ballentine [3] calculated the density of states in liquid mercury using the Green function method
and the above nonlocal pseudopotential. Their results show only a small dip of the DOS below
the free-electron curve and thus do not corroborate the pseudogap picture. DOS calculations
by Itami and Shimoji [5] also show only a small dip. Several other DOS calculations for liquid
mercury (see Ballentine [6] for a review) indicate that the pseudogap, if present, lies below
rather than at the Fermi energy. The pseudogap conjecture was later withdrawn by Mott [7]
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as being relevant to the transport properties of mercury at room temperature and pressure, but
he still maintained that it may indeed be relevant to explaining the increase in the magnetic
susceptibility of mercury with increasing temperature or on addition of indium.

On the experimental front Norriset al [8] and Cottiet al [9] have reported measurements of
the photoemission spectrum of liquid mercury and claim that their data support the pseudogap
conjecture for the bulk DOS. The difficulties involved in interpreting the photoemission data
are well known as there are both surface and bulk contributions to consider and even the bulk
contribution is not directly proportional to the DOS. Both of the above two photoemission
studies claim to have taken into account all relevant factors in the interpretation of the data.
Recent photoemission work by Oelhafenet al [10] also points to the existence of a minimum
in the DOS at the Fermi level in liquid mercury, less pronounced than in other heavy liquid
polyvalent metals such as Tl, Pb and Bi.

In this paper we present a calculation of the electronic structure of liquid mercury based on
density functional theory and realistic structural models for 150◦C and 250◦C. The calculations
are performed using the tight-binding linear muffin-tin orbitals (TB-LMTO) basis (Andersen
and Jepsen [11]; Andersenet al [12]) and the recursion method (Haydock [13]). The electronic
structure of solid mercury is also presented for the sake of comparison. Finally, a resistivity
calculation for liquid mercury in the temperature range 150–250◦C based on the Kubo–
Greenwood formula [14] is presented.

An issue of considerable interest related to electronic structure is the metal–semiconductor
transition in expanded liquid Hg, occurring around the density rangeρ ≈8–9 g cm−3. This
is expected at reduced densities when the 6s and 6p conduction bands no longer overlap.
The sharpness of this transition is expected to be diffused as a result of density fluctuations
and loss of long- and short-range order in the liquid state. Mattheiss and Warren [15] have
presented a band model (based on various crystalline structures) calculation for the electronic
structure of expanded liquid mercury and studied the possibility of an energy gap appearing
as a result of reduced coordination number. Several other band model calculations [16–18]
appeared prior to that of Mattheiss and Warren [15]. All these calculations show clearly a
dependence of the critical density at the metal–semiconductor transition on the assumed crystal
structure. The calculation by Mattheiss and Warren [15] is probably the most meaningful
among the band-model calculations, since the experimental indication [19] is that as a result
of increasing temperature the co-ordination number decreases in the liquid, while the average
nearest neighbour distance (the position of the first peak in the pair distribution function)
stays more or less unchanged. Yonezawaet al [20] have employed an effective medium
theory together with the single-site approximation to discuss the electronic structure of liquid
Hg. Results of the band-model and effective medium calculations are drastically different.
Although the band calculation for the crystalline structures comes closer to the experimental
results, an improvement in theoretical results based on realistic liquid structure is certainly
desirable. Because of a lack of structural models appropriate for higher temperatures, we are
unable to address this issue in the present paper. The LMTO (or any other) method based on
local density approximation would yield less reliable results as one approaches the transition.
A proper way to include the correlation effects near the transition would be warranted. In
addition, one would need to go beyond the atomic sphere approximation (ASA) as the structure
becomes more open with increasing temperature.

A significant contribution with regard to metal–nonmetal transition in expanded liquid
Hg has recently been made by Kresse and Hafner [21]. These authors have used anab initio
density functional molecular dynamics simulation to generate liquid Hg structures at higher
temperatures and performed a systematic study of the opening of a gap in the single particle
DOS with decreasing density. Their calculation reveals the opening of a gap at a density of
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about 8.8 g cm−3. Their results suggest that the metal–nonmetal transition is simply a band-
crossing transition and that both disorder-induced localization and many-body effects might
be less important than had been previously proposed by Cohen and co-workers [22].

The calculations of Kresse and Hafner [21] are based on thek-space (supercell) method and
use unit cells of 50 atoms. Our calculation is carried out in real space and uses somewhat larger
(1372 atoms) clusters. Additional differences come from the choice of the basis, TB-LMTO
versus plane waves [21]. The electron–ion interaction in [21] is described by pseudopotentials.
By using pseudopotential and plane waves Kresse and Hafner [21] have avoided the problems
associated with the LMTO-ASA (atomic sphere approximation) method for open structures.
Jank and Hafner [23] have used the LMTO-ASA supercell (k-space) method for 64 atom
clusters to study the electronic structure of liquid mercury at−35 ◦C. Our study is similar to
this calculation in terms of the method (i.e., LMTO) used, but differs in terms of the technique
(k-space versus real space), cluster size and the temperatures for which the calculation is done
(−35 ◦C [23] versus 150–250◦C). Besides, the clusters used in our calculation and those used
by Kresse and Hafner [21] and Jank and Hafner [23] were prepared via different techniques.
Since the only comparison between simulated clusters and real systems is via the density and
experimental pair distribution functions, it is worthwhile checking whether clusters prepared
via different techniques give rise to nontrivial differences in the electronic properties. Finally,
both the real-space method and thek-space (supercell) method have their advantages and
disadvantages. In thek-space method one is usually restricted to small clusters and also a
small number ofk-points for computing the energy eigenvalues. But charge self-consistency
is achieved for each atom in the cluster. The real-space calculation can be carried out for much
larger clusters, but charge self-consistency is achieved on average for a select group of atoms.

The remainder of this paper is divided into the following sections. In section 2 we describe
how the model clusters representing liquid mercury were constructed. In section 3 we discuss
the electronic structure of liquid and solid mercury. Results for the various crystalline phases
are presented in section 3.1, followed by a discussion on the liquid state electronic structure
in section 3.2. In section 4 we discuss the resistivity calculation. Section 5 summarizes our
results.

2. Simulation of liquid mercury

Clusters representing liquid mercury were generated via the Monte Carlo (MC) method using
the well known Metropolis [24] scheme. In order to compare the energies of different
configurations a suitable two-body potential was needed. Since there is no suitable pair
potential available in the literature for solid or liquid Hg, we attempted to construct one based
on a method proposed by Carlssonet al [25]†. These authors derived a procedure for inverting
the cohesive energy of an isostructural one-component system as a function of volume in order
to obtain a pair potential. Essentially, the cohesive energy is written as a lattice sum of some
effective two-body potential. The series for the cohesive energy is inverted to obtain the pair
potential in the form of a series involving the cohesive energies for various lattice parameters.
Suppose that the cohesive energy,E, for nearest neighbour distancer1 is written as a sum over

† A pair potential for Hg has been discussed by March and co-workers [26]. This potential is derived using the
Born–Green approach, and the Kirkwood superposition approximation for the three-body distribution function. The
details of this potential in a form suitable for use in a Monte Carlo simulation were not available to us.
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the atomic sitesER of a spherically symmetric and volume-independent pair potentialφ:
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By including further and further neighbour shells in the sum in equation (4) one can converge to
a potential within a given accuracy. However, for the purpose of generating a liquid structure,
a rigorous convergence is not necessary. In figure 1(a) we show the potentials in Hg obtained
by writing the cohesive energy as a sum of pair potentials involving two and eight shells
of neighbours, assuming fcc structure. The difference between the two potentials can be
considered as small, in view of the fact that in the MC simulation the pair potential is cut off
beyond a certain distance. Usually this is beyond the first minimum in the (experimentally
determined) pair distribution function for the liquid structure to be generated. In generating
the potentials shown in figure 1 we used the standard LMTO-ASA method to calculate the
cohesive energies for various lattice parameters for Hg in the fcc structure using the von Barth
and Hedin [27] local density exchange–correlation potential. This choice of the exchange–
correlation potential correctly yields the rhombohedral structure ground state energy to be
lower than that of other close packed structures such as hcp, fcc and bcc. The calculated
ground state (rhombohedral phase) lattice parameter is only∼ 1% less than the experimental
value. The corresponding cohesive energy is 0.84 eV, about 25% higher than the experimental
cohesive energy, 0.67 eV. The fcc phase ground state energy is only marginally (about 2%)
higher than the rhombohedral phase ground state energy. In our MC simulation we have used
the potential obtained by writing the cohesive energy as a sum of pair potentials involving two
shells of neighbours in the fcc structure, having fitted this potential to a generalized Morse
form:

φ(r) = C(e−2α(r−r0) −De−α(r−r0)) (5)

with C = 0.183 43 eV,α = 1.8537 Å−1, r0 = 3.1366 Å,D = 1.6877. The potential was cut
off beyond 4.5 Å. In figure 1(b) we compare the potential obtained from the cohesive energy
(fitted to equation (4) with two shells of neighbours) with that given by the analytic form given
by equation (5). As discussed in detail by Carlssonet al [25], the depth of the potential thus
obtained is too large compared with the potentials obtained by the pseudopotential approach
(for sp-bonded metals) or by fitting to experimental cohesive energy and other elastic properties.
For example, the potential given by equation (5) has a depth of 0.128 eV, whereas the melting
point of Hg is 233 K or 0.02 eV. The simulation using the above potential had to be carried
out at a very high temperature (above 3000 K) to obtain pair distribution functions that match
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Figure 1. (a) Pair potentials for Hg obtained by writing the cohesive energy as a sum of two and
eight shells of neighbours in the fcc phase, and by using equation (4), (b) pair potential obtained
by writing the cohesive energy as a sum of two shells of neighbours in the fcc phase, compared
with that given by the generalized Morse potential, equation (5). The arrow indicates the location
of the cut-off in the potential for the MC simulation.

the experimental curves in the temperature range 150–250◦C (Waseda 1980 [28]). In the
context of the present work the simulation temperature has no physical significance beyond
simply a means of generating liquid clusters via a canonical MC simulation. In figure 2 we
compare the pair distribution functions of 1372 atom clusters obtained via simulations with
the experimental distributions at 150◦C and 250◦C. The number densities of these clusters
are chosen to be the appropriate values for the corresponding temperatures (0.0386 Å−3 at
250 ◦C, and 0.0397 Å−3 at 150◦C [28]). The agreement between the experimental and the
simulated pair distribution functions is excellent at 250◦C and becomes poorer for lower
temperatures. However, for 150◦C the agreement is still good enough to permit the use of the
simulated clusters as appropriate models for liquid Hg at 150◦C. In figure 3(a) we compare
the experimental pair distribution functions [28] of liquid Hg at−35 ◦C and 250◦C. There
are nonsignificant differences in the two pair distributions, especially beyond the first peak,
which cannot be reproduced via the volume-independent pair potential we have used for the
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Figure 2. Pair distribution functions in simulated clusters for liquid Hg compared with the
corresponding experimental results [28], for (a) 250◦C and (b) 150◦C.

simulation. In part (b) of this figure we have plotted our best simulation result for−35◦C with
the corresponding experimental curve. It is possible to fit the first peak in the experimental
curve to the simulation result, but agreement beyond the first peak stays poor. Tamura and
Hosokawa [29] have presented x-ray diffraction measurements of expanded fluid Hg up to
the supercritical region. The pair distribution function shows very little change between 250
and 500◦C, apart from a slight broadening of the first peak with increasing temperature. The
density decreases from 12.98 g cm−3 to 12.40 g cm−3. Hence we expect the electronic structure
to change very little between 250 and 500◦C. The results that we present in this paper (based on
our clusters representing liquid Hg at 250◦C) can be considered to be representative of liquid
Hg between 250 and 500◦C. In the absence of an appropriate volume-dependent two-body
potential we have decided not to extend our study to higher temperatures at this stage.

Potentials constructed via nonlocal exchange–correlation functionals differ somewhat
from those obtained with local functionals in terms of the depth and the location of the
minimum. For example, the exchange–correlation potential by Perdew and Wang [30] gives the
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Figure 3. (a) Experimental pair distribution functions in liquid Hg at−35 ◦C and 250◦C [28],
(b) pair distribution function in liquid Hg at−35◦C [28] compared with that of a simulated cluster,
indicating lack of agreement beyond the first peak.

fcc structure as the lowest energy one and the cohesive energies for various lattice parameters
for this structure then yield a pair potential, which can be parametrized as

φ(r) = A6

d6
+
A4

d4
+
A3

d3
+
A2

d2
+
A1

d
+A0 (6)

whered = r2, andA6 = 1346.9077 eV/Å12, A4 = 5356.56 eV/Å8, A3 = −630.394 eV/Å6,
A2 = 22.0034 eV/Å4, A1 = −1.4984 eV/Å2, A0 = 0.062 313 eV. MC simulations using this
potential at temperatures around 3000 K yield clusters with pair distribution functions very
similar to those shown in figure 2.

Recently, Munejiriet al [31] have used the ‘inverse method’ to generate an effective pair
potentialφ(r) for mercury. The method is based on a combination of integral equations and
computer simulations. The integral equations used connectφ(r) to the experimental radial
distribution function, the direct correlation function as well as the so-called bridge function.
A molecular dynamics simulation is performed with an initial choice of the bridge function
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appropriate for a hard sphere system. The radial distribution function and the corresponding
structure factor are calculated for the simulated clusters. These are used to update the direct
correlation function and the bridge function. The newφ(r) obtained from these updated
quantities is used in the simulation to generate new clusters and the process is iterated until
convergence to desired accuracy is obtained inφ(r). We are currently exploring this method
as well as the reverse Monte Carlo method of Reevyet al [32]. Both of these methods are
considerably more demanding of computer time than the Metropolis Monte Carlo method used
in this work.

3. Electronic structure

By now the LMTO and TB-LMTO methods are well documented [11, 12] well tested schemes,
and have been used extensively (see, e.g., [33–36]) in the study of all forms of condensed
matter: periodic, quasiperiodic and disordered. We use the standard LMTO method to study
the electronic structure of the crystalline phases and the TB-LMTO scheme to study the liquid
phase. We have used both the first-order TB-LMTO HamiltonianH1 (Hamiltonian in the most
localized, but nonorthogonal basis) as well as the second-order HamiltonianH2 (less localized,
but nearly orthogonal basis). Recursion calculation using the second-order HamiltonianH2

was carried out using the approximations described in earlier publications [33–36].

3.1. Crystalline phases

The standard scalar-relativistic LMTO-ASA method, including combined corrections, was
used to determine the electronic structure of Hg in the assumed crystalline phases: fcc,
rhombohedral, hcp, bcc and diamond. It was found that the use of a local density exchange–
correlation functional such as that due to von Barth and Hedin [27] or Vosko, Wilk and Nusair
[37] yields correctly the rhombohedral phase as the ground state crystal structure, although the
lattice parameter is underestimated by about 1% and the cohesive energy is overestimated by
10–15%, with respect to the corresponding experimental values. The agreement for the lattice
parameter can perhaps be improved by going beyond the ASA, i.e., using the full-potential
LMTO method. The use of the modified gradient expansion approximation of Langreth, Mehl
and Hu (Langreth and Mehl [38]; Hu and Langreth [39]) overestimates the ground state lattice
parameter by about 2% compared with the experimental value.

In figure 4 we show the DOS in the close-packed structures: rhombohedral, fcc and hcp,
obtained by using the von Barth and Hedin [27] exchange–correlation potential. The DOS
shown are for Wigner–Seitz (W–S) radius (radius of space filling spheres centred about the
atoms)W = 3.3334 au. This is the W–S radius for the experimental rhombohedral ground
state of Hg, corresponding to a density of approximately 14.5 g cm−3. The values ofW
corresponding to the lowest energy, for the von Barth and Hedin [27] exchange–correlation
potential, are 3.3124 au, 3.3334 au, and 3.3034 au for the fcc, hcp and rhombohedral structures,
respectively, with the rhombohedral structure giving the lowest energy among all the structures
studied. Even atW = 3.3334 au the rhombohedral phase energy is lower than that for the
other structures. The lowering of energy in going from the fcc to the rhombohedral phase is
due to slightly enhanced s–p hybridization in the rhombohedral phase, leading to an increased
number of p electrons, and making the charge distribution more ‘covalent-like’. This point
was discussed recently by Singh [40], who studied the importance of relativistic effects in
determining the cohesive properties of Hg. It is noteworthy that although the rhombohedral
phase is the lowest energy one, the corresponding DOS does not show any noticeable pseudogap
at the Fermi energyEF . One can conclude that for close-packed structures the pseudogap is
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Figure 4. DOS for Hg in various assumed crystalline phases: (a) rhombohedral, (b) fcc and (c) hcp.
See text for details. Vertical lines show the locations of the Fermi energy.
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Figure 5. DOS for Hg in bcc structure. See text for details. Vertical lines show the locations of
the Fermi energy.

quite sensitive to the exact arrangement of neighbours.
In figure 5 we show the DOS for the less close-packed bcc structure for two values of

W–S radius:W = 3.3334 au andW = 3.4291 au. The latter value of W corresponds to
the same nearest neighbour distance as in the close-packed structures considered in figure 4
(corresponding to a density of 13.3 g cm−3). The lowest energy for the bcc phase is obtained
for W = 3.3334 au. Note that forW = 3.4291 au the width of the pseudogap atEF is larger
than that for the hcp and fcc structures shown in figure 4. ForW = 3.3334 au the decrease in
the nearest neighbour distance leads to increased overlap between neighbouring orbitals and
the pseudogap is somewhat reduced. But even at this decreased nearest neighbour distance the
width of the pseudogap is larger than that in fcc or hcp phase.

The results for the crystalline structure reveal the importance of reduced coordination
number in producing or enhancing the pseudogap near the Fermi level. It should be noted that
in a low co-ordination environment the pseudogap is more stable against small fluctuations in
positions of near neighbours than in close-packed environments. This is because for close-
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packed configurations small changes in the nearest neighbour positions can render the structure
from fcc-like to rhombohedral-like, causing a noticeable change in the magnitude of the
pseudogap. Note that for the same density or W–S radius (W = 3.3334 au) the fcc structure
has a pronounced pseudogap (figure 4(b)), whereas for the rhombohedral structure no such
feature is noticeable (figure 4(a)). For less close-packed structures the pseudogap is wider,
making it less sensitive to the exact arrangement of near neighbours. Our calculations for the
diamond structure also support this conclusion. This conclusion, based on our calculations for
the ground state nearest neighbour distance, should hold qualitatively at higher temperatures for
increased nearest neighbour distance. At higher temperatures the reduced average coordination
may play a more pivotal role in determining the pseudogap at the Fermi energy than increased
near neighbour separation.

3.2. Liquid phase

In figure 6 we show the DOS calculated for fcc Hg at a density of 0.0386 atoms Å−3, the density
of liquid Hg at 250◦C [28], using the standard LMTO method and the recursion method [13]
applied to a 1372 atom fcc cluster with periodic boundary conditions. The second-order
HamiltonianH2 was used for the recursion method calculation and the continued fraction was
terminated using the linear predictor method of Allan [41]. The difference in the band widths
in the two calculations is due to the differences in the Hamiltonians used,H2 being only the
first two terms in the infinite series on the rhs of equation (3) representing the full LMTO-ASA
Hamiltonian. Both DOS show a pseudogap with the Fermi energy (EF ) lying slightly above
the minimum of the pseudogap. The similarity of the two curves shows the reliability of the
real space method we are going to use for calculating the liquid state electronic structure and
also that features such as a deep minimum in the DOS (i.e., pseudogap) are reproducible via
the recursion method.
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Figure 6. The DOS for fcc Hg at the density of liquid Hg at 250◦C, calculated via the standard
LMTO-ASA (k-space) method and the recursion method using HamiltonianH2. Vertical lines
show the locations of the Fermi energy.

As discussed towards the end of section 2, althoughH1 is the Hamiltonian in the
most localized TB-LMTO basis, the DOS calculated fromH1 using the standard orthogonal
recursion scheme may not be accurate, because of the nonorthogonality of the corresponding
TB-LMTO basis. To incorporate the effect of the nonorthogonality of the basis one can carry
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Figure 7. A comparison of the DOSs in liquid Hg at 250◦C, calculated by using the Hamiltonians
H2 andH1. Each DOS is a ten atom average in a 1372 atom cluster. Vertical lines show the
locations of the Fermi energy.

out the recursion using the HamiltonianH2. In figure 7 we display the DOS calculated with
the HamiltoniansH2 andH1 for a 1372 atom cluster representing liquid Hg at 250◦C. The
DOS shown are ten atom averages. The effect of the second term on the rhs of equation (3) is
to shift most energy eigenvalues to higher energy, increasing the bandwidth as well as pushing
the bottom of the band to higher energy compared with the TB-LMTO HamiltonianH1. The
shape of the DOS around the Fermi energyEF (between−0.3–0.0 Ryd) is given more correctly
byH2 than byH1. In the d part of the band, bothH2 andH1 give more or less the same DOS.
Note that the value ofN(EF ), the DOS at theEF , is about 30% smaller forH2.

To ensure that the features in the density of states are not influenced by the particular
terminator used for the recursion method, we have repeated the calculation with several
different schemes of terminating the continued fraction. None of the methods used showed any
evidence of a pseudogap for the liquid state density of states. In figure 8 we present the DOS
(ten atom average) in a liquid Hg cluster for 250◦C obtained by using the Allan terminator
[41] and that due to Beer and Pettifor [42]. The DOS shown are for the HamiltonianH1 and
the similarity of the two DOS clearly indicates that our results are independent of the particular
method of terminating the continued fraction expansion of the Green function.

In figure 9 we show the DOS for 1372 atom clusters representing liquid Hg at 250 and
150◦C, obtained by using the HamiltonianH2. Each DOS shown is an average over the local
DOS for 100 atoms in the cluster, and the terminator used is that due to Allan [41]. The
calculated DOS at the Fermi level shows a lowering with respect to the free electron DOS and
the Mottg-factor is approximately 70% (71.4% at 250◦C). This agrees well with the result of
electron spectroscopy studies of Oelhafenet al [10]. However, a deep pseudogap as observed
in most crystalline phases (fcc, bcc, diamond and hcp) does not exist in the liquid state around
the temperatures 150–250◦C. The pronounced pseudogap of the crystalline phase disappears
in the liquid phase due to fluctuations in local environments causing local ‘6s’ and ‘6p’ DOS
to vary somewhat in their peak heights, centres and widths. In figure 10 we show the local
s and p orbital projected DOS for ten different atoms in a cluster representing liquid Hg at
250 ◦C. The variations in their magnitude at the Fermi level are large enough to wipe out a
pseudogap-like feature in this energy region. Based on the results for the crystalline phase
DOS we can understand that this is due to the fact that at temperatures∼ 500 ◦C the liquid
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Figure 8. DOS in a 1372 atom cluster representing liquid Hg at 250◦C using the Allan [41] and
Beer and Pettifor [42] terminators. The vertical line shows the location of the Fermi energy.

Figure 9. The DOS in liquid Hg at 250◦C and 150◦C calculated via the recursion method using
HamiltonianH2. Results show 100 atom averages. Vertical lines show the locations of the Fermi
energy. The free electron DOS is also shown.

structure is more or less close packed, the number of atoms within the first peak in the pair
distribution function being around ten. It is expected that at higher temperatures the pseudogap
should reappear and become deeper as a result of decreasing co-ordination number leading
to less overlap of s and p orbitals. The latter reduces the width of both s and p bands, and
the hybridization between them. According to the calculation of Kresse and Hafner [21] this
pseudogap due to increased separation of s and p bands appears in the liquid state at the density
of 8.8 g cm−3.

The agreement between our results and that of Hafner and co-workers [21, 23] is good.
Small differences in results are primarily due to differences in the densities considered. Kresse
and Hafner [21] report electronic structure for densities 12.40 g cm−3 and above for liquid
Hg, while Jank and Hafner [23] report the results for 13.6 g cm−3. The densities of our liquid
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Figure 10. Local s- and p-orbital projected DOS shown for ten atoms in a 1372 atom cluster
representing liquid Hg at 250◦C. The vertical line shows the location of the Fermi energy. The
free electron DOS is also shown.

clusters, appropriate for 250◦C and 150◦C, are 12.86 g cm−3 and 13.23 g cm−3, respectively.
The shape, valence band width and the value of the DOS at the Fermi level in our calculation
and that of Hafner and co-workers [21, 23] are all similar. Both ours and the calculations of [21]
and [23] show a similar lowering of the DOS below the free electron value. The appearance
of a minimum in the DOS starts around a density of 12.40 g cm−3 [21]. The minimum liquid
density considered by us is 12.86 g cm−3.

In figure 11(a) we show the average s- and p-orbital projected DOS in liquid Hg at 250◦C.
In figure 11(b) we compare the s- and p-orbital projected DOS in liquid Hg clusters at 250 and
150◦C. The minimum occurring in the s,p DOS at energies belowEF is not due to increased
separation between the centres of the 6s and 6p bands, but due to the hybridization of the d
band with the sp band, sometimes referred to as a ‘Fano effect’. As shown in figure 9, apart
from an almost imperceptible decrease in the d bandwidth there is virtually no change in the
DOS as the temperature increases from 150◦C to 250◦C, the DOS atEF remaining around
[2–2.2] states/(Ryd atom), not much different from that in the rhombohedral ground state of
Hg. Both s and p DOS at the Fermi energy are found to remain unchanged in our calculation
as the temperature increases from 150◦C to 250◦C. The lack of variation in the s DOS is in
agreement with the measurement of the Knight shift in liquid Hg, which is found to be more
or less independent of the density around these values [15].

Based on their electron spectroscopy studies, Oelhafenet al[10] remark that the minimum
in the DOS at the Fermi level can be observed only in the liquid state and not in the solid state
at−183◦C. Our calculations show (figures 4 and 5) that although the pseudogap is present in
several crystalline phases (fcc, bcc, hcp and diamond), it is nonexistent in the rhombohedral
phase (density equal to 14.5 g cm−3), which is the ground state, according to our total energy
calculations. According to our calculations the Mottg-factor is about 10% lower in the liquid
phase at 250◦C than in the rhombohedral ground state. This result is in consistence with
the above remark by Oelhafenet al [10]. For Hg the spin–orbit interaction should lead to a
splitting of the 5d band into 5d3/2 and 5d5/2 bands. Our scalar-relativistic calculation neglects
the spin–orbit interaction. Oelhafenet al [10] mention that their measurements clearly show
that only the 5d5/2 electrons hybridize with the 6s electrons, while 5d3/2 electrons strictly
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Figure 11. s- and p-orbital projected DOSs in liquid Hg: (a) at 250◦C (the free electron DOS is
also shown), (b) total s+p DOS compared at 250◦C and 150◦C. Vertical lines show the locations
of the Fermi energy.

preserve their core character. Clearly, a better agreement with experiment would warrant a
fully relativistic calculation, also perhaps going beyond the local density approximation used
in the present work.

For the sake of completeness we also include (figure 12) the DOS for the liquid cluster at
−35 ◦C. Overall features of this DOS are almost identical to that for 250◦C. Since the pair
distribution for this cluster agrees with the experimental curve only up to the first peak, the
DOS shown in figure 12 is less reliable than the DOS shown for 150◦C and 250◦C.

4. Electrical conductivity

We have calculated the resistivity of the liquid clusters using the Kubo–Greenwood formula
[14] and the TB-LMTO-recursion method, as discussed by Bose, Jepsen and Andersen [36].
According to the Kubo–Greenwood formula the diagonal elements of the zero-temperature dc
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Figure 12. The DOS of a 1372 atom cluster representing liquid Hg at−35 ◦C. Vertical lines show
the locations of the Fermi energy.

conductivity tensor in the eigenfunction representation are given by

σjj = e2h

�

∑
m,n

|〈Em|vj |En〉|2δ(Em − EF )δ(En − EF ) (7)

where� is the sample volume,h is Planck’s constant,EF is the Fermi energy andvj is thej
component of the velocity operator. Relating the Dirac-δ function to the imaginary part of the
Green function and using the expression∑

m

δ(E − Em)〈Em|f (E)|Em〉 = g(E)f (E)Em=E (8)

where the bar implies an average over the eigenfunctions with energyE, andg(E) is the
sample DOS at energyE, equation (10) can be put in a physically transparent form:

σjj = e2

�a
n(EF )D(EF ). (9)

Here�a is the volume per atom,n(EF ) is the DOS per atom at the Fermi energy andD(EF )

is the diffusivity given by

D(EF ) = −h̄ lim
ε→0+

Im[〈Em|vjG(EF + iε)vj |Em〉]Em=EF . (10)

Apart from a numerical factor,D(EF ) can be considered as the average local DOS projected
onto the statesvj |Em〉, and this we calculate using the recursion method. We calculate the
eigenvectors|Em〉 by a filtering technique used originally by Kramer and Weaire [43]. The
matrix elements of the velocity operator in the TB-LMTO basis are

(vj )βγ =
(

i

h̄

)∑
δ

(Hβδx
j

δγ − xjβδHδγ ) (11)

wherex andH denote the position and the Hamiltonian operators and the subscripts denote
the combined angular momentum and the site indices. The matrix elements of the position
operator,xjγβ , can be written as

x
j

γβ = 〈χαγ |xj |χαβ 〉 =
1

2
(xjγ + xjβ)O

α
γβ + 〈χαγ |

[
xj − 1

2
(xjγ + xjβ)

]
|χαβ 〉 (12)
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wherexjβ is thexj coordinate of the atomic nucleus on which the orbitalβ is centered.|χαβ 〉
represents a TB-LMTO orbital with the subscript denoting jointly a site and the collective
angular momentum indexL. The second term on the rhs of the above equation, the so-
called dipole term, is neglected. If the diffusivity calculation is carried out by using the
HamiltonianH2, then the nonorthogonality of the basis is small and can be neglected. For
calculations involvingH1 the overlap matrixOα

γβ must be included in the computation of the
matrix elements of the position operator.

Resistivity calculations for the 1372-atom liquid Hg clusters were carried out using the
HamiltonianH2. The overlap matrix in equation (12) was replaced by the identity matrix. The
calculated value for liquid Hg at 250◦C was approximately 200µ� cm. The resistivities for
the clusters representative of−35◦C and 150◦C were close to this value, being within the error
bars of the computed values,±15µ� cm. This is because the structural differences between the
clusters is small and we have used the zero temperature Kubo–Greenwood formula, neglecting
the Fermi factor. The measured resistivity values at 100◦C and 500◦C are 103.3µ� cm
and 160µ� cm, respectively [44]. The present calculation indicates the effectiveness of the
TB-LMTO-recursion scheme for the study of electronic transport in systems such as liquid
Hg, but stands in need of further improvement.

The most noteworthy source of error in the resistivity calculation as described above is
the approximate treatment of the velocity matrix elements. The neglect of the dipole term in
equation (12) can be justified if the basis consists of only s and d orbitals, with pure s and d
symmetry. The inclusion of the p orbitals in the basis, as well as the fact that the TB-LMTO
orbitals lack pure angular momentum (L) symmetry, makes the validity of this approximation
questionable. Apart from this, there are possible errors associated with the recursion method,
and inadequacies in structural models. It is also important to check the saturation in the
computed resistivity value with the cluster length. This involves preparing clusters of different
lengths, and was not done in the present work.

5. Comments and conclusions

We have presented the electronic DOS for realistic structural models of liquid mercury in the
temperature range 150–250◦C. Our calculation does not yield any noticeable local minimum
near the Fermi level. However, a lowering of the DOS at the Fermi level with respect to the
free electron value is observed and the magnitude of the Mottg-factor (∼70%) agrees with
the results obtained by Hafner and co-workers [21, 23] as well as the photoemission studies
by Oelhafenet al [10]. The calculations for various assumed crystalline phases of Hg reveal
the importance of reduced coordination number in the opening of a pseudogap. It is found
that in the bcc structure the pseudogap is quite stable against changes in the near neighbour
distance. In close packed structures like fcc, hcp and rhombohedral the pseudogap is sensitive
to the details of the near neighbour arrangements. It is thus conceivable that in liquid Hg
at high temperatures, where the average coordination number becomes bcc-like or less, a
pseudogap (in the sense of a pronounced local minimum in the DOS) at the Fermi level exists.
Recently, Nield and Verronen [45] have studied the structure of expanded liquid mercury by
applying the reverse Monte Carlo modelling technique to the x-ray diffraction data of Tamura
and Hosokawa [29]. The calculated value of the coordination number depends on the method
used to evaluate this quantity, and error bars of±2 are common. However, the elaborate study
of Nield and Verronen [45] suggests that an average coordination number of less than eight
can appear in liquid Hg for densities less than 9.24 g cm−3 or for temperatures higher than
1400◦C. For temperatures up to∼ 500 ◦C, where the structure is more or less close packed,
fluctuations in local environments are expected to prevent the formation of any deep local
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minimum. This observation is supported by the theoretical work of Hafner and co-workers
[21, 23]. The absence of a deep local minimum in the DOS as seen in this work is in agreement
with the earlier work by Chan and Ballentine [3] and with the observations made by Ballentine
[6] in his review article. No pronounced local minimum nearEF accompanies the lowering
of the DOS below the free electron value in liquid Hg at temperatures below∼ 500◦C.

Resistivity calculation, based on the Kubo–Greenwood formula and TB-LMTO-recursion
method, yields values for the liquid Hg clusters that are similar to the experimental values.
Calculations based on realistic structural models and equations (9)–(12) can provide insight
into the decrease in resistivity of liquid Hg on alloying. For example, in Hg–In the volume
per atom�a should be slightly higher than that in pure liquid Hg (see tables on pages 270–
273 of [28]). This would increase resistivity. However,n(EF ) might increase as a result of
hybridization, and if the weight of the s states at the Fermi level increases on alloying, the
diffusivity D(EF )might also increase, resulting in an overall increase in conductivity. We are
currently in the process of generating alloy structures to be able to carry out such calculations.
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